Nanomedicine is the application of nanotechnology to achieve innovation in healthcare. It uses the properties developed by a material at its nanometric scale 10-9 m which often differ in terms of physics, chemistry or biology from the same material at a bigger scale.

Moreover, the nanometric size is also the scale of many biological mechanisms in the human body allowing nanoparticles and nanomaterials to potentially cross natural barriers to access new sites of delivery and to interact with DNA or small proteins at different levels, in blood or within organs, tissues or cells.

At the nano-scale, the surface-to-volume ratio is such that the surface properties are becoming an intrinsic parameter of the potential actions of a particle or material. Coating of the particles and functionalization of their surfaces (even on multiple levels) are in this way extremely common to increase the biocompatibility of the particle and its circulation time in the blood, as well as to ensure a highly selective binding to the desired target.

Nanomedicine has the potential to enable early detection and prevention and to drastically improve diagnosis, treatment and follow-up of many diseases including cancer but not only. Overall, Nanomedicine has nowadays hundreds of products under clinical trials, covering all major diseases including cardiovascular, neurodegenerative, musculoskeletal and inflammatory. Enabling technologies in all healthcare areas, Nanomedicine is already accounting for approximatively 80 marketed products, ranging from nano-delivery and pharmaceutical to medical imaging, diagnostics and biomaterials.

MolBNL@UnTS is a member of the COST Action CA17140 "Cancer Nanomedicine - from the bench to the bedside".

COST Action CA17140 is the first, pan-European interdisciplinary network of representatives from academic institutions and small and medium enterprises including clinical research organizations (CROs) devoted to the development of nanosystems carrying anticancer drugs from their initial design, pre-clinical testing of efficacy, pharmacokinetics and toxicity to the preparation of detailed protocols needed for the first phase of their clinical studies.

By promoting scientific exchanges, technological implementation and innovative solutions, the Action will provide a timely instrument to rationalize and focus research efforts at the EU level in dealing with the grand challenge of nanomedicine translation in cancer, one of the major and societal-burdening human pathologies.